Android Binder

1、binder原理

纵观现有市面上所有讲binder的文章,都存在一个最大的问题:没有讲清楚binder对象是什么?
不清楚binder对象是什么,那就不能理解handle是什么?不能理解什么时候是binder什么时候是handle,那就不能真正理解整个IPC的通讯过程。

我们首先回到binder的目的,就是IPC(Inter-Process Communication)进程间通讯。那么怎么样实现进程间通讯呢?要素有三个:

  • 函数指针;
  • 函数参数;
  • 函数返回值;

binder通讯的本质实际上非常简单,就是client、server双方在共享内存的基础上封装成自定义api函数,并无神奇之处。我们看看他是怎么和IPC三要素对应上的:

1.1、IPC函数指针

binder的service_server可以向service_client提供service服务,但反过来不行。所以binder service其实是单向的,只有service_server端才能提供service函数,且函数只能在service_server端运行。

大部分情况下:service_server端提供的一组IPC服务本地函数,就是binder对象

例如,mediaserver注册的一系列service中的一个”media.player”:

1
2
3
4
5
6
7
8
9
10
11
12
/frameworks/av/media/mediaserver/main_mediaserver.cpp:
int main(int argc __unused, char **argv __unused)
{
MediaPlayerService::instantiate();
}


/frameworks/av/media/libmediaplayerservice/MediaPlayerService.cpp:
void MediaPlayerService::instantiate() {
defaultServiceManager()->addService(
String16("media.player"), new MediaPlayerService());
}

service_server提供了一组可以在server本地运行的函数,即binder对象。如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/frameworks/av/media/libmedia/IMediaPlayerService.cpp:
status_t BnMediaPlayerService::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
switch (code) {
case CREATE: {
CHECK_INTERFACE(IMediaPlayerService, data, reply);
sp<IMediaPlayerClient> client =
interface_cast<IMediaPlayerClient>(data.readStrongBinder());
audio_session_t audioSessionId = (audio_session_t) data.readInt32();
sp<IMediaPlayer> player = create(client, audioSessionId);
reply->writeStrongBinder(IInterface::asBinder(player));
return NO_ERROR;
} break;
case CREATE_MEDIA_RECORDER: {
CHECK_INTERFACE(IMediaPlayerService, data, reply);
const String16 opPackageName = data.readString16();
sp<IMediaRecorder> recorder = createMediaRecorder(opPackageName);
reply->writeStrongBinder(IInterface::asBinder(recorder));
return NO_ERROR;
} break;

...
}
}

在service_client端可以通过handle来引用这个binder对象,还封装了一系列与之对应的函数来组织数据。但是这些函数实际上是通讯用的,函数的实际功能并不能在client本地执行:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/frameworks/av/media/libmedia/IMediaPlayerService.cpp:
class BpMediaPlayerService: public BpInterface<IMediaPlayerService>
{
public:

virtual sp<IMediaPlayer> create(
const sp<IMediaPlayerClient>& client, audio_session_t audioSessionId) {
Parcel data, reply;
data.writeInterfaceToken(IMediaPlayerService::getInterfaceDescriptor());
data.writeStrongBinder(IInterface::asBinder(client));
data.writeInt32(audioSessionId);

remote()->transact(CREATE, data, &reply);
return interface_cast<IMediaPlayer>(reply.readStrongBinder());
}

virtual sp<IMediaRecorder> createMediaRecorder(const String16 &opPackageName)
{
Parcel data, reply;
data.writeInterfaceToken(IMediaPlayerService::getInterfaceDescriptor());
data.writeString16(opPackageName);
remote()->transact(CREATE_MEDIA_RECORDER, data, &reply);
return interface_cast<IMediaRecorder>(reply.readStrongBinder());
}

...
};

所以理解binder对象handle是非常关键的。service_server端需要在本地执行函数,所以执行时函数调用的3要素(函数、参数、返回值)都必须是本地的,所以它必须拥有一组函数的binder对象;service_client端不需要在本地执行,所以它没有函数集的binder对象,它只有函数集的远端引用handle

binder通讯的3个主角:service_mannager、service_server、service_client。在各种场景下,分别的binder对象handle关系如下:


































binder object_handle
场景clientserver
service_manage初始化
service_manager:


本地的binder对象为svcmgr_handler()函数集;

通过ioctl BINDER_SET_CONTEXT_MGR命令把该binder对象注册成全局handle0;


binder device:


创建handle0引用,指向service_manager
service_server的addService
service_server:


target handle:handle0

data:binder对象为一组本地service函数集;


service_manager:


binder驱动会创建对该binder对象的引用handle

通过SVC_MGR_ADD_SERVICE命令把该handle加入到service_manage的handle链表中;

service_client的get_service
service_client:


target handle:handle0

data:service name。整个过程中没有binder对象的参与。

向service_manager获取service_server的service函数的handle;


service_manage:


SVC_MGR_GET_SERVICE命令,通过service的name在service_manage的handle链表中查找对应的handle,并且把handle返回给service_client;

这样对于service_server的binder对象,service_client和service_manage都持有它的handle了;
service_client调用service
service_client:


target handle:serive handle0。上一步获取的handle。

data:调用参数。调用参数中也可能包含handle/binder对象。(看server端的处理)


service_server:


驱动把target handle翻译成本地binder对象,调用对象提供的本地函数。

对于data中可能包含的含handle/binder对象的处理:

1、如果包含的handle是本进程binder的引用,把它翻译成本地binder,在本地可以运行;

2、如果包含的handle不是本进程binder的引用,只能给它创建一份新的引用handle。这个handle也不能在server进程中运行,只能向其他service_server请求服务;

3、不可能包含binder对象,因为client进程的binder对象在service_server进程中无法运行;

衍生出的原则如下:

  • service_server类的进程只有binder对象,没有handle(除了handle0),因为它所有操作都必须本地执行,引用远程对象毫无意义;
  • service_client类的进程只有handle,没有binder对象,因为它需要远程执行service不需要本地执行;
  • service_mannager进程同时有binder对象handle,它本地binder对象的作用就是操作所有其他进程的handle

1.2、IPC函数参数

如上一节描述,service_client可以通过名字向service_manage查询得到handle。这个handle就相当于远程的函数集指针。
但是对于一个函数调用,我们除了需要函数指针,还需要传递参数。

binder使用parcel方式来打包函数参数和返回值。parcel可以用来传递几种类型的数据:

  • 普通类型的少量数据;
  • binder对象/handle(struct flat_binder_object);
  • fd(struct binder_fd_object);

下面详细描述每种情况的parcel包格式和承载的内容。

  • 1、普通类型的少量数据:

这种普通类型(int/long/string…)的少量数据存储最为简单,存入时按照一定的顺序存入,取出时按照数据的排列格式取出即可。

  • 2、binder对象/handle(struct flat_binder_object):

这一类型数据的parcel包格式如下:

binder_parcel_binder_object_format

可以看到这种类型的parcel包中包含了两种数据:data0/data1/…是普通类型数据;binder_obj0/binder_obj1/…是binder对象,binder_obj0 offset/binder_obj1 offset/…指出了了binder对象在parcel包中的偏移;

binder对象和handle共用结构体struct flat_binder_object。

上一节说过binder对象其实就是一组函数的指针,但是一个指针只需要一个long类型就可以标识了,为什么还需要用一个结构体struct flat_binder_object来传递。我理解下来主要的思想如下:使用binder都是面向对象语言c++/java,它们把函数组也要实例化成一个对象,一个对象只有被引用时才不会被回收,远程引用也需要让本地引用加1。

一组service函数,对本地进程来说就是binder,对其他需要使用的进程来说需要远程引用,就是handle,是一对多的关系。关系图如下:

binder_binderobj_and_handle

binder object是service_server的一个“local binder object”,service_manager和service_client创建了多个远程引用“remote handle”。

这个其实就是binder的核心思想,binder花费了大量的代码在维护这个关系上面:

  • service_server进程在驱动中创建了binder_node节点来保存binder对象,把本进程所有的binder_node都挂载在一颗红黑树proc->nodes上;
  • service_manager和service_client每个新进程对这个binder对象引用,就创建一个新的binder_ref,它的值就是handle,并回指向binder_node。并且把本进程对其他service_server的引用都挂载到两颗红黑树proc->refs_by_node/proc->refs_by_desc上。并且远程引用会增加service_server进程关于binder对象的引用计数;

binder驱动负责建立起binder对象handle之间的映射关系,创建上述的数据结构,并负责翻译:

  • service_server把本地binder对象向service_manager注册。会在service_manager进程本地建立起binder_node,驱动会在service_manager进程中建立起对应的binder_ref引用,那么service_manager进程能看到的其实就是本进程对service_serverbinder对象的一个引用,并不能看到binder对象原始值;
  • service_client根据名字向service_manager查询service。service_manager会返回本进程的handle,在内核中该handle会转换成binder对象binder_node。因为service_client不是service的本地进程,所以service_client不能得到binder对象,它只能得到引用handle。所以再针对service的binder对象创建一份service_client进程的本地引用;
  • [x] service_client调用远程service_server的service。内核判断handle引用是service_server的本地对象,就把handle转换成service_server的binder对象

  • 3、fd(struct binder_fd_object):

parcel还能传输文件句柄fd,此时的包格式如下:

binder_parcel_fd_object_format

传输fd的意义何在呢?当binder的两个进程间需要传输大量的数据。例如:图像声音数据、或者是一个对象。可以在匿名共享内存(Ashmem)中创建一块区域,源进程会得到一个相应的fd,再把这个fd使用binder传递给目的进程,就可以共享数据了。

需要特别说明的是对象的传递,在同一个进程内进行函数调用的话,参数对象通常是使用引用的方式传递的。但是如果是跨进程的调用,是没有办法引用的,只有把整个对象复制过去。这种操作叫做对象的序列化,java称为Serializable,android有优化的实现Parcelable。注意对象序列化的Parcelable和binder的parcel数据封装不是一回事,尽管他们原理上很相似。binder并没有提供对象Parcelable的接口,如果我们要跨进程传输对象,只能把对象序列化(Parcelable)到匿名共享内存中,再把对应fd通过binder传输给目的进程。

binder_fdobject_translate

binder驱动在检测到传输的是fd,会在新的进程中分配一个新的fd,并指向原来的file结构,这样fd就被跨进程duplicate了。两个进程使用各自的fd对匿名共享内存区域进行mmap映射,就能访问相同的内存区域了。

1.3、IPC函数返回值

函数返回值也是使用和函数参数一样的parcel结构来封装数据的。就不再重复叙述。

上面提到的原则需要再次强调,在一次service_client和service_server之间的通讯,在传递参数和返回值时都要遵循的准则:service_client只会有handle,service_server只会有binder对象

1.4、binder内存

前面说过binder通讯的本质就是在共享内存上加上一层api,我们来看看他是怎么管理共享内存的。

binder_alloc_buffer

我们可以看到:

  • binder驱动给每个进程分配最多4M的buffer空间,这段空间在内核通过binder_proc->alloc红黑树来管理,同时通过mmap映射到进程用户空间;
  • 和所有的进程通讯机制类似,这段空间相当于进程的接收邮箱inbox,其他进程发过来的消息会从其他进程用户空间复制存放到这里;
  • 因为是mmap的所有本进程的用户空间访问免除了一次拷贝;
  • 另外因为进程支持多个线程,所以多个线程会共享本进程的binder buffer;

binder_alloc_buffer_transaction

我们看一下process 0、process n进程和process 1进程进行binder通讯时的buffer使用情况:

  • 首先会在process 1进程的inbox(binder buffer)空间中分配buffer;
  • binder驱动把process 0、process n进程用户空间的消息拷贝到process 1进程的inbox内核buffer中;
  • 因为mmap,process 1进程的用户空间也可以看见这些消息了;

2、binder驱动

驱动是整个binder通讯的核心,java和native都是对其的封装。
因为binder驱动代码比较繁杂,看代码比较不好理解。结合第一章讲的基础知识和binder通讯具体场景,我们使用图来分析每一个典型场景下binder驱动内的变化。

2.1、service_manager的初始化

binder_action_servicemanager_init

通过上图我们可以看到具体过程:

  • 1、binder驱动为service_manager进程创建一个新的binder_node结构,赋值:.ptr=0、.cookie=0、.proc=当前proc;
  • 2、把这个binder_node新节点加入到当前进程的proc->nodes红黑树中;
  • 3、把binder_device的全局handle 0指针binder_device->context.binder_context_mgr_node指向新创建的binder_node;这样其他人通过handle 0指针就能找到对应binder_node,进一步找到service_manager是哪一个进程;

service_manager代码在service_manager.cbinder.c,可以具体查看。初始化过程为:

1
main() -> binder_open()、binder_become_context_manager()

2.2、service_server的addService

binder_action_serviceserver_addservice

通过上图我们可以看到,在service_server向service_manager注册service的时候,在驱动中的具体流程如下:

  • 1、因为是向service_manager注册,所以target handle固定=0。通过binder_device->context找到handle 0对应的binder_node,也就找到了对应的binder_proc,找到了对应的service_manager进程;
  • 2、在service_manager进程中分配binder buffer,把service_server传递过来的parcel数据全部复制进去;
  • 3、翻译parcel数据中的binder对象,把binder翻译成handle;
  • 4、可以看到service_manager进程的handle就是对service_server进程binder的一个引用。把handle加入到service_manager进程的handle缓存红黑树中;
  • 5、把翻译后的parcel数据和其他信息打包成binder_transaction结构,并挂载到service_manager进程的proc->todo/thread->todo链表中,等待service_manager进程的读取;

service_manager的读取响应和reply动作就不去具体分析了,因为都非常的清晰。service_manager代码在service_manager.cbinder.c,可以具体查看。service_manager在svcmgr_handler()函数中响应service_server的SVC_MGR_ADD_SERVICE请求,最终调用do_add_service()把handle和对应的service name加到svclist链表中:

1
main() -> binder_loop() -> binder_parse() -> svcmgr_handler() -> do_add_service()

2.3、service_client的get service

binder_action_serviceclient_getservice_send

如上图service_client向service_manager发送get service请求的数据比较简单:

  • 1、根据handle 0找到service_manager进程;
  • 2、在service_manager进程中分配binder buffer,把service_client传递过来的parcel数据全部复制进去;
  • 3、parcel的内容中没有binder或者handle,不需要翻译;
  • 4、把parcel数据和其他信息打包成binder_transaction结构,并挂载到proc->todo/thread->todo链表中,等待service_manager进程的读取;

binder_action_serviceclient_getservice_reply

上图是service_manager给service_client回复信息的过程:

  • 1、service_manager根据service name在本地svclist链表中找到对应的handle,它把handle打包进parcel并reply给service_client;
  • 2、根据service_manager所在线程thread->transaction_stack字段中保存的binder_transaction结构,从.from字段可以找到service_client所在的线程(binder_thread)和进程(binder_proc);
  • 3、在service_client进程中分配binder buffer,把service_manager传递过来的parcel数据全部复制进去;
  • 4、翻译parcel中打包的handle结构,判断handle指向的binder_node进程不是service_client进程,所以新建service_client进程中对binder_node新的引用。新创建handle并加入到service_client进程的handle缓存红黑树中;
  • 5、这样service_client就从service_manager中获取到了service_server binder对应的引用handle;
  • 6、把翻译后的parcel数据和其他信息打包成binder_transaction结构,并挂载到service_client进程的proc->todo/thread->todo链表中,等待service_client进程读取reply;

2.4、service_client调用service

binder_action_serviceclient_callservice

上图是service_client调用service_server的service的过程:

  • 1、service_client的target handle为上一步向service_manager查询得到的handle,根据handle能找到对应binder_node,进一步找到service_server所在进程;
  • 2、在service_server进程中分配binder buffer,把service_client传递过来的parcel数据全部复制进去;
  • 3、parcel中打包了函数参数,如果包含handle对象,需要进行翻译;不可能包含binder对象,因为service_client进程的binder对象在service_server进程中无法运行;
  • 4、如果parcel中包含的handle指向的binder_noe和service_server是同一进程,把它翻译成本地binder,在本地可以运行;
  • 5、如果parcel中包含的handle指向的binder_noe和service_server不是同一进程,那只能在service_server进程中给它创建一份新的引用handle。这个handle也不能在service_server进程中运行,只能向其他service_server请求服务;
  • 6、把翻译后的parcel数据和其他信息打包成binder_transaction结构,并挂载到service_client进程的proc->todo/thread->todo链表中,等待service_client进程读取reply;

2.5、Scatter-gather模式

在Android O中binder增加了一种性能改进模式Scatter-gather,这是因为binder在传输IPC参数数据时,因为传输的量不大,binder实际上做了3次拷贝:

binder_transcation_3_copy

Scatter-gather把3次copy优化成1次:

binder_transcation_Scatter-gather_1_copy

具体的代码可以看驱动对BINDER_TYPE_PTR类型数据的处理:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
case BINDER_TYPE_PTR: {
struct binder_buffer_object *bp =
to_binder_buffer_object(hdr);
size_t buf_left = sg_buf_end - sg_bufp;

if (bp->length > buf_left) {
binder_user_error("%d:%d got transaction with too large buffer\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EINVAL;
return_error_line = __LINE__;
goto err_bad_offset;
}
if (copy_from_user(sg_bufp,
(const void __user *)(uintptr_t)
bp->buffer, bp->length)) {
binder_user_error("%d:%d got transaction with invalid offsets ptr\n",
proc->pid, thread->pid);
return_error_param = -EFAULT;
return_error = BR_FAILED_REPLY;
return_error_line = __LINE__;
goto err_copy_data_failed;
}
/* Fixup buffer pointer to target proc address space */
bp->buffer = (uintptr_t)sg_bufp +
binder_alloc_get_user_buffer_offset(
&target_proc->alloc);
sg_bufp += ALIGN(bp->length, sizeof(u64));

ret = binder_fixup_parent(t, thread, bp, off_start,
offp - off_start,
last_fixup_obj,
last_fixup_min_off);
if (ret < 0) {
return_error = BR_FAILED_REPLY;
return_error_param = ret;
return_error_line = __LINE__;
goto err_translate_failed;
}
last_fixup_obj = bp;
last_fixup_min_off = 0;
} break;

2.6、多个binder context

Android O以后创建了3个misc设备,对应3个domain(contexts),相互独立:

1
2
 # ls /dev/*binder
/dev/binder /dev/hwbinder /dev/vndbinder

因为在Android O以后HIDL也启用了binder通信,使用binder通信的进程越来越多,为了便于管理并且相互隔离,Android把binder划分成了3个domain(contexts):

IPC Domain Description
/dev/binder IPC between framework/app processes with AIDL interfaces
/dev/hwbinder IPC between framework/vendor processes with HIDL interfacesIPC between vendor processes with HIDL interfaces
/dev/vndbinder IPC between vendor/vendor processes with AIDL Interfaces

2.7、调试接口

binder驱动创建了很多调试接口,可以方便的debug binder通讯的过程。

1、”/d/binder/state”

全局情况:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# more /d/binder/state
binder state:
dead nodes:
node 392820: u0000007b50bf75a0 c0000007b2b4d5b80 pri 0:139 hs 1 hw 1 ls 0 lw 0
is 1 iw 1 tr 1 proc 3021
node 176573: u0000007b50bf72c0 c0000007b4515a600 pri 0:139 hs 1 hw 1 ls 0 lw 0
is 1 iw 1 tr 1 proc 5571
node 56178: u0000007b50a8dfa0 c0000007b50bc31c0 pri 0:139 hs 1 hw 1 ls 0 lw 0
is 1 iw 1 tr 1 proc 3135
node 47334: u0000007b47f0df40 c0000007b47f077c0 pri 0:139 hs 1 hw 1 ls 0 lw 0
is 1 iw 1 tr 1 proc 1458
node 342153: u0000007b47f0d480 c0000007b451bf8c0 pri 0:139 hs 1 hw 1 ls 0 lw 0
is 1 iw 1 tr 1 proc 5571
node 50574: u0000007b451ffa20 c0000007b3519e5c0 pri 0:139 hs 1 hw 1 ls 0 lw 0
is 1 iw 1 tr 1 proc 1458
node 49594: u0000007b451ff940 c0000007b3507f480 pri 0:139 hs 1 hw 1 ls 0 lw 0
is 1 iw 1 tr 1 proc 2859

2、”/d/binder/stats”

全局统计:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# more /d/binder/stats
binder stats:
BC_TRANSACTION: 226132
BC_REPLY: 201918
BC_FREE_BUFFER: 633493
BC_INCREFS: 9234
BC_ACQUIRE: 9415
BC_RELEASE: 6040
BC_DECREFS: 6014
BC_INCREFS_DONE: 5551
BC_ACQUIRE_DONE: 5552
BC_REGISTER_LOOPER: 355
BC_ENTER_LOOPER: 229
BC_REQUEST_DEATH_NOTIFICATION: 2908
BC_CLEAR_DEATH_NOTIFICATION: 2146
BC_DEAD_BINDER_DONE: 225
BC_TRANSACTION_SG: 118790
BC_REPLY_SG: 86885
BR_TRANSACTION: 344921
BR_REPLY: 288803
BR_TRANSACTION_COMPLETE: 633725
BR_INCREFS: 5559
BR_ACQUIRE: 5560
BR_RELEASE: 3436
BR_DECREFS: 3435
BR_SPAWN_LOOPER: 357
BR_DEAD_BINDER: 226
BR_CLEAR_DEATH_NOTIFICATION_DONE: 2146
proc: active 163 total 232
thread: active 852 total 3214
node: active 1610 total 5564
ref: active 2557 total 9384
death: active 746 total 2908
transaction: active 1 total 633725
transaction_complete: active 0 total 633725
proc 10578
context binder
threads: 18
requested threads: 0+2/15
ready threads 3
free async space 520192
nodes: 41

3、”/d/binder/proc/xxx”

具体进程的情况:

1
2
3
4
5
6
7
8
9
10
11
12
13
# cat /d/binder/proc/1037
binder proc state:
proc 1037
context binder
thread 1037: l 12 need_return 0 tr 0
thread 1094: l 00 need_return 0 tr 0
thread 1096: l 12 need_return 0 tr 0
node 2758: u0000006fe9c10000 c0000006fe9c0d008 pri 0:139 hs 1 hw 1 ls 0 lw 0 is 1 iw 1 tr 1 proc 704
node 1192: u0000006fea02f620 c0000006fea029868 pri 0:139 hs 1 hw 1 ls 0 lw 0 is 1 iw 1 tr 1 proc 549
ref 1190: desc 0 node 2 s 1 w 1 d 0000000000000000
ref 1204: desc 1 node 170 s 1 w 1 d 0000000000000000
ref 249105: desc 2 node 5946 s 1 w 1 d 0000000000000000
buffer 249107: 0000000000000000 size 3600:0:0 delivered

3、service manager实现

service_manager逻辑很清晰,代码也不多,主要流程在上节中已经描述就不再详细分析。service_manager.cbinder.c

4、native实现

整个native层binder的实现还是以mediaserver为例来说明。

4.1、process/thread

binder_native_process_thread

上图已经把native层binder通讯最重要的部分都画出来了,理解了这张图native的实现基本理解了大半:

  • binder在server接收端会创建多个线程,在发送端不会创建专门的线程直接在发送者的线程中;
  • [x] binder在server端的通用对象是BBinder,在client端的通用引用对象是BpBinder。具体service的server端和client端的实现,只要继承这两个类就行了;

  • 1、ProcessState类

因为binder buffer是一个进程一份的,所以不论是client还是server进程,都只会创建一个binder fd,进行一次mmap映射。binder fd、mmap公共资源在本进程内的多个线程间共享。native使用了一个ProcessState类来管理这些进程公共资源。

1
sp<ProcessState> proc(ProcessState::self());


frameworks/native/libs/binder/ProcessState.cpp:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
sp<ProcessState> ProcessState::self()
{
Mutex::Autolock _l(gProcessMutex);
if (gProcess != NULL) {
return gProcess;
}
/* (1) 创建新的ProcessState对象 */
gProcess = new ProcessState("/dev/binder");
return gProcess;
}

ProcessState::ProcessState(const char *driver)
: mDriverName(String8(driver))
, mDriverFD(open_driver(driver)) /* (1.1) open binder节点"/dev/binder",获得文件句柄 */
, mVMStart(MAP_FAILED)
, mThreadCountLock(PTHREAD_MUTEX_INITIALIZER)
, mThreadCountDecrement(PTHREAD_COND_INITIALIZER)
, mExecutingThreadsCount(0)
, mMaxThreads(DEFAULT_MAX_BINDER_THREADS)
, mStarvationStartTimeMs(0)
, mManagesContexts(false)
, mBinderContextCheckFunc(NULL)
, mBinderContextUserData(NULL)
, mThreadPoolStarted(false)
, mThreadPoolSeq(1)
{
if (mDriverFD >= 0) {
// mmap the binder, providing a chunk of virtual address space to receive transactions.
/* (1.2) 根据fd映射1M的mmap空间 */
mVMStart = mmap(0, BINDER_VM_SIZE, PROT_READ, MAP_PRIVATE | MAP_NORESERVE, mDriverFD, 0);
if (mVMStart == MAP_FAILED) {
// *sigh*
ALOGE("Using /dev/binder failed: unable to mmap transaction memory.\n");
close(mDriverFD);
mDriverFD = -1;
mDriverName.clear();
}
}

LOG_ALWAYS_FATAL_IF(mDriverFD < 0, "Binder driver could not be opened. Terminating.");
}

static int open_driver(const char *driver)
{
/* (1.1.1) open节点的具体操作 */
int fd = open(driver, O_RDWR | O_CLOEXEC);
if (fd >= 0) {
int vers = 0;
status_t result = ioctl(fd, BINDER_VERSION, &vers);
if (result == -1) {
ALOGE("Binder ioctl to obtain version failed: %s", strerror(errno));
close(fd);
fd = -1;
}
if (result != 0 || vers != BINDER_CURRENT_PROTOCOL_VERSION) {
ALOGE("Binder driver protocol(%d) does not match user space protocol(%d)! ioctl() return value: %d",
vers, BINDER_CURRENT_PROTOCOL_VERSION, result);
close(fd);
fd = -1;
}
/* (1.1.2) 设置默认最大接收线程数为15 */
size_t maxThreads = DEFAULT_MAX_BINDER_THREADS;
result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads);
if (result == -1) {
ALOGE("Binder ioctl to set max threads failed: %s", strerror(errno));
}
} else {
ALOGW("Opening '%s' failed: %s\n", driver, strerror(errno));
}
return fd;
}
  • 2、IPCThreadState类

native binder对线程也进行了封装。

  • 2.1、对于server端来说,native binder创建一个线程池,可以多个接收线程来响应和运行service服务。例如
1
2
3
4
5
6
7
8
# ps -eT | grep Binder
mediaex 1028 1180 1 2179292 15664 binder_thread_read 0 S Binder:1028_1
mediaex 1028 1886 1 2179292 15664 binder_thread_read 0 S Binder:1028_2
mediaex 1028 1887 1 2179292 15664 binder_thread_read 0 S Binder:1028_3
mediaex 1028 2489 1 2179292 15664 binder_thread_read 0 S Binder:1028_4
mediaex 1028 5497 1 2179292 15664 binder_thread_read 0 S Binder:1028_5
media 1034 1130 1 2140724 10968 binder_thread_read 0 S Binder:1034_1
media 1034 8000 1 2140724 10968 binder_thread_read 0 S Binder:1034_2

具体代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
ProcessState::self()->startThreadPool();

void ProcessState::startThreadPool()
{
AutoMutex _l(mLock);
if (!mThreadPoolStarted) {
mThreadPoolStarted = true;
spawnPooledThread(true);
}
}

void ProcessState::spawnPooledThread(bool isMain)
{
if (mThreadPoolStarted) {
String8 name = makeBinderThreadName();
ALOGV("Spawning new pooled thread, name=%s\n", name.string());
/* (1)新创建一个PoolThread对象
main的意思就是它是一个接收主线程,它不会动态的退出
*/
sp<Thread> t = new PoolThread(isMain);
t->run(name.string());
}
}


PoolThread类继承了Thread类,并且实现了线程主循环函数:threadLoop()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class PoolThread : public Thread
{
public:
explicit PoolThread(bool isMain)
: mIsMain(isMain)
{
}

protected:
virtual bool threadLoop()
{
/* (1.1) 线程主循环,进一步调用 */
IPCThreadState::self()->joinThreadPool(mIsMain);
return false;
}

const bool mIsMain;
};


创建IPCThreadState对象
frameworks/native/libs/binder/IPCThreadState.cpp:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
IPCThreadState* IPCThreadState::self()
{
if (gHaveTLS) {
restart:
const pthread_key_t k = gTLS;
IPCThreadState* st = (IPCThreadState*)pthread_getspecific(k);
if (st) return st;
/* (1.1.1) 创建一个本地线程的IPCThreadState对象 */
return new IPCThreadState;
}

if (gShutdown) {
ALOGW("Calling IPCThreadState::self() during shutdown is dangerous, expect a crash.\n");
return NULL;
}

pthread_mutex_lock(&gTLSMutex);
if (!gHaveTLS) {
int key_create_value = pthread_key_create(&gTLS, threadDestructor);
if (key_create_value != 0) {
pthread_mutex_unlock(&gTLSMutex);
ALOGW("IPCThreadState::self() unable to create TLS key, expect a crash: %s\n",
strerror(key_create_value));
return NULL;
}
gHaveTLS = true;
}
pthread_mutex_unlock(&gTLSMutex);
goto restart;
}

IPCThreadState::IPCThreadState()
: mProcess(ProcessState::self()),
mStrictModePolicy(0),
mLastTransactionBinderFlags(0)
{
pthread_setspecific(gTLS, this);
clearCaller();
// FLYME:duanlusheng@SHELL.Flyme.hips.Feature {@
mRealCallingPid = -1;
// @}
mIn.setDataCapacity(256);
mOut.setDataCapacity(256);
}


最后进入IPCThreadState类的线程主循环函数joinThreadPool()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
void IPCThreadState::joinThreadPool(bool isMain)
{
LOG_THREADPOOL("**** THREAD %p (PID %d) IS JOINING THE THREAD POOL\n", (void*)pthread_self(), getpid());

mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER);

status_t result;
do {
processPendingDerefs();
// now get the next command to be processed, waiting if necessary
result = getAndExecuteCommand();

if (result < NO_ERROR && result != TIMED_OUT && result != -ECONNREFUSED && result != -EBADF) {
ALOGE("getAndExecuteCommand(fd=%d) returned unexpected error %d, aborting",
mProcess->mDriverFD, result);
abort();
}

// Let this thread exit the thread pool if it is no longer
// needed and it is not the main process thread.
if(result == TIMED_OUT && !isMain) {
break;
}
} while (result != -ECONNREFUSED && result != -EBADF);

LOG_THREADPOOL("**** THREAD %p (PID %d) IS LEAVING THE THREAD POOL err=%d\n",
(void*)pthread_self(), getpid(), result);

mOut.writeInt32(BC_EXIT_LOOPER);
talkWithDriver(false);
}

status_t IPCThreadState::getAndExecuteCommand()
{
status_t result;
int32_t cmd;

/* (1.1.2.1) 和binder驱动交互:
把mOut中的数据发送给binder驱动
把接收驱动中的数据到mIn
*/
result = talkWithDriver();
if (result >= NO_ERROR) {
size_t IN = mIn.dataAvail();
if (IN < sizeof(int32_t)) return result;

/* (1.1.2.2) 读出接收数据中的cmd */
cmd = mIn.readInt32();
IF_LOG_COMMANDS() {
alog << "Processing top-level Command: "
<< getReturnString(cmd) << endl;
}

pthread_mutex_lock(&mProcess->mThreadCountLock);
mProcess->mExecutingThreadsCount++;
if (mProcess->mExecutingThreadsCount >= mProcess->mMaxThreads &&
mProcess->mStarvationStartTimeMs == 0) {
mProcess->mStarvationStartTimeMs = uptimeMillis();
}
pthread_mutex_unlock(&mProcess->mThreadCountLock);

/* (1.1.2.3) 执行cmd */
result = executeCommand(cmd);

pthread_mutex_lock(&mProcess->mThreadCountLock);
mProcess->mExecutingThreadsCount--;
if (mProcess->mExecutingThreadsCount < mProcess->mMaxThreads &&
mProcess->mStarvationStartTimeMs != 0) {
int64_t starvationTimeMs = uptimeMillis() - mProcess->mStarvationStartTimeMs;
if (starvationTimeMs > 100) {
ALOGE("binder thread pool (%zu threads) starved for %" PRId64 " ms",
mProcess->mMaxThreads, starvationTimeMs);
}
mProcess->mStarvationStartTimeMs = 0;
}
pthread_cond_broadcast(&mProcess->mThreadCountDecrement);
pthread_mutex_unlock(&mProcess->mThreadCountLock);
}

return result;
}


我们只需要关注其中BR_TRANSACTION命令的处理:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
status_t IPCThreadState::executeCommand(int32_t cmd)
{
BBinder* obj;
RefBase::weakref_type* refs;
status_t result = NO_ERROR;

switch ((uint32_t)cmd) {

case BR_TRANSACTION:
{
binder_transaction_data tr;
result = mIn.read(&tr, sizeof(tr));
ALOG_ASSERT(result == NO_ERROR,
"Not enough command data for brTRANSACTION");
if (result != NO_ERROR) break;

Parcel buffer;
buffer.ipcSetDataReference(
reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
tr.offsets_size/sizeof(binder_size_t), freeBuffer, this);

const pid_t origPid = mCallingPid;
// FLYME:duanlusheng@SHELL.Flyme.hips.Feature {@
const pid_t origPidCopy = mRealCallingPid;
// @}
const uid_t origUid = mCallingUid;
const int32_t origStrictModePolicy = mStrictModePolicy;
const int32_t origTransactionBinderFlags = mLastTransactionBinderFlags;

mCallingPid = tr.sender_pid;
// FLYME:duanlusheng@SHELL.Flyme.hips.Feature {@
mRealCallingPid = tr.sender_pid;
// @}
mCallingUid = tr.sender_euid;
mLastTransactionBinderFlags = tr.flags;

//ALOGI(">>>> TRANSACT from pid %d uid %d\n", mCallingPid, mCallingUid);

Parcel reply;
status_t error;
IF_LOG_TRANSACTIONS() {
TextOutput::Bundle _b(alog);
alog << "BR_TRANSACTION thr " << (void*)pthread_self()
<< " / obj " << tr.target.ptr << " / code "
<< TypeCode(tr.code) << ": " << indent << buffer
<< dedent << endl
<< "Data addr = "
<< reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer)
<< ", offsets addr="
<< reinterpret_cast<const size_t*>(tr.data.ptr.offsets) << endl;
}
if (tr.target.ptr) {
// We only have a weak reference on the target object, so we must first try to
// safely acquire a strong reference before doing anything else with it.
if (reinterpret_cast<RefBase::weakref_type*>(
tr.target.ptr)->attemptIncStrong(this)) {
/* (1.1.2.3.1) 如果target是一个合法的本地对象,
把tr.cookie转换成BBinder对象,并调用BBinder->transact()来处理数据
*/
error = reinterpret_cast<BBinder*>(tr.cookie)->transact(tr.code, buffer,
&reply, tr.flags);
reinterpret_cast<BBinder*>(tr.cookie)->decStrong(this);
} else {
error = UNKNOWN_TRANSACTION;
}

} else {
error = the_context_object->transact(tr.code, buffer, &reply, tr.flags);
}

//ALOGI("<<<< TRANSACT from pid %d restore pid %d uid %d\n",
// mCallingPid, origPid, origUid);

if ((tr.flags & TF_ONE_WAY) == 0) {
LOG_ONEWAY("Sending reply to %d!", mCallingPid);
if (error < NO_ERROR) reply.setError(error);
sendReply(reply, 0);
} else {
LOG_ONEWAY("NOT sending reply to %d!", mCallingPid);
}

mCallingPid = origPid;
// FLYME:duanlusheng@SHELL.Flyme.hips.Feature {@
mRealCallingPid = origPidCopy;
// @}
mCallingUid = origUid;
mStrictModePolicy = origStrictModePolicy;
mLastTransactionBinderFlags = origTransactionBinderFlags;

IF_LOG_TRANSACTIONS() {
TextOutput::Bundle _b(alog);
alog << "BC_REPLY thr " << (void*)pthread_self() << " / obj "
<< tr.target.ptr << ": " << indent << reply << dedent << endl;
}

}
break;

}


BBinder是一个标准的通用binder对象,它的transact()函数会被具体的service子类重写,所以会调用到具体子类的transact()函数中
frameworks/native/libs/binder/Binder.cpp:

1
2
3
4
5
6
7
8
9
10
11
12
status_t BBinder::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t /*flags*/)
{
switch (code) {
case INTERFACE_TRANSACTION:
reply->writeString16(getInterfaceDescriptor());
return NO_ERROR;

default:
return UNKNOWN_TRANSACTION;
}
}


BnMediaPlayerService是负责具体实现的子类,最后会调用进BnMediaPlayerService类的onTransact()函数中:
frameworks/av/media/libmedia/IMediaPlayerService.cpp:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
status_t BnMediaPlayerService::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
switch (code) {
case CREATE: {
CHECK_INTERFACE(IMediaPlayerService, data, reply);
sp<IMediaPlayerClient> client =
interface_cast<IMediaPlayerClient>(data.readStrongBinder());
audio_session_t audioSessionId = (audio_session_t) data.readInt32();
sp<IMediaPlayer> player = create(client, audioSessionId);
reply->writeStrongBinder(IInterface::asBinder(player));
return NO_ERROR;
} break;
case CREATE_MEDIA_RECORDER: {
CHECK_INTERFACE(IMediaPlayerService, data, reply);
const String16 opPackageName = data.readString16();
sp<IMediaRecorder> recorder = createMediaRecorder(opPackageName);
reply->writeStrongBinder(IInterface::asBinder(recorder));
return NO_ERROR;
} break;

default:
return BBinder::onTransact(code, data, reply, flags);
}
}
  • 2.2、对于client端来说是发送数据,native binder不会对其创建新的线程,但是IPCThreadState类也为client端的发送提供了封装。

client端通用的binder远端代理类为BpBinder,它的发送数据到binder驱动的函数为transact():
frameworks/native/libs/binder/BpBinder.cpp:

1
2
3
4
5
6
7
8
9
10
11
12
13
status_t BpBinder::transact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
// Once a binder has died, it will never come back to life.
if (mAlive) {
status_t status = IPCThreadState::self()->transact(
mHandle, code, data, reply, flags);
if (status == DEAD_OBJECT) mAlive = 0;
return status;
}

return DEAD_OBJECT;
}


最后调用到IPCThreadState类的相关方法:
frameworks/native/libs/binder/IPCThreadState.cpp

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
status_t IPCThreadState::transact(int32_t handle,
uint32_t code, const Parcel& data,
Parcel* reply, uint32_t flags)
{
status_t err = data.errorCheck();

flags |= TF_ACCEPT_FDS;

IF_LOG_TRANSACTIONS() {
TextOutput::Bundle _b(alog);
alog << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand "
<< handle << " / code " << TypeCode(code) << ": "
<< indent << data << dedent << endl;
}

if (err == NO_ERROR) {
LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(),
(flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY");

/* (1) 把数据写入mOut */
err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);
}

if (err != NO_ERROR) {
if (reply) reply->setError(err);
return (mLastError = err);
}

if ((flags & TF_ONE_WAY) == 0) {
#if 0
if (code == 4) { // relayout
ALOGI(">>>>>> CALLING transaction 4");
} else {
ALOGI(">>>>>> CALLING transaction %d", code);
}
#endif

/* (2) 使用mOut、mIn和binder驱动进行通讯 */
if (reply) {
err = waitForResponse(reply);
} else {
Parcel fakeReply;
err = waitForResponse(&fakeReply);
}
#if 0
if (code == 4) { // relayout
ALOGI("<<<<<< RETURNING transaction 4");
} else {
ALOGI("<<<<<< RETURNING transaction %d", code);
}
#endif

IF_LOG_TRANSACTIONS() {
TextOutput::Bundle _b(alog);
alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand "
<< handle << ": ";
if (reply) alog << indent << *reply << dedent << endl;
else alog << "(none requested)" << endl;
}
} else {
err = waitForResponse(NULL, NULL);
}

return err;
}



status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult)
{
uint32_t cmd;
int32_t err;

while (1) {

/* (2.1) 和binder驱动通讯 */
if ((err=talkWithDriver()) < NO_ERROR) break;
err = mIn.errorCheck();
if (err < NO_ERROR) break;
if (mIn.dataAvail() == 0) continue;

cmd = (uint32_t)mIn.readInt32();

IF_LOG_COMMANDS() {
alog << "Processing waitForResponse Command: "
<< getReturnString(cmd) << endl;
}

switch (cmd) {
case BR_TRANSACTION_COMPLETE:
if (!reply && !acquireResult) goto finish;
break;

}

4.2、manager proxy

service_client service_server和service_manager通讯时,都是处于client角色,所以只能操作service_manager的代理对象。我们看一下具体的代理对象是怎么创建起来的。

server在注册service服务时,都需要获取到默认manager代理:

1
2
3
4
void MediaPlayerService::instantiate() {
defaultServiceManager()->addService(
String16("media.player"), new MediaPlayerService());
}


frameworks/native/libs/binder/IServiceManager.cpp:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
sp<IServiceManager> defaultServiceManager()
{
if (gDefaultServiceManager != NULL) return gDefaultServiceManager;

{
AutoMutex _l(gDefaultServiceManagerLock);
while (gDefaultServiceManager == NULL) {
/* (1) 创建BpBinder对象,并在此基础上创建它的子类BpServiceManager对象 */
gDefaultServiceManager = interface_cast<IServiceManager>(
ProcessState::self()->getContextObject(NULL));
if (gDefaultServiceManager == NULL)
sleep(1);
}
}

return gDefaultServiceManager;
}

|→
frameworks/native/libs/binder/ProcessState.cpp

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
sp<IBinder> ProcessState::getContextObject(const sp<IBinder>& /*caller*/)
{
/* (1.1) 为service_manager创建handle=0的BpBinder对象 */
return getStrongProxyForHandle(0);
}

sp<IBinder> ProcessState::getStrongProxyForHandle(int32_t handle)
{
sp<IBinder> result;

AutoMutex _l(mLock);

/* (1.1.1) 查询BpBinder对象缓存,相同handle是否已经创建 */
handle_entry* e = lookupHandleLocked(handle);

if (e != NULL) {
// We need to create a new BpBinder if there isn't currently one, OR we
// are unable to acquire a weak reference on this current one. See comment
// in getWeakProxyForHandle() for more info about this.
IBinder* b = e->binder;
if (b == NULL || !e->refs->attemptIncWeak(this)) {
if (handle == 0) {
// Special case for context manager...
// The context manager is the only object for which we create
// a BpBinder proxy without already holding a reference.
// Perform a dummy transaction to ensure the context manager
// is registered before we create the first local reference
// to it (which will occur when creating the BpBinder).
// If a local reference is created for the BpBinder when the
// context manager is not present, the driver will fail to
// provide a reference to the context manager, but the
// driver API does not return status.
//
// Note that this is not race-free if the context manager
// dies while this code runs.
//
// TODO: add a driver API to wait for context manager, or
// stop special casing handle 0 for context manager and add
// a driver API to get a handle to the context manager with
// proper reference counting.

Parcel data;
status_t status = IPCThreadState::self()->transact(
0, IBinder::PING_TRANSACTION, data, NULL, 0);
if (status == DEAD_OBJECT)
return NULL;
}

/* (1.1.2) 给新handle新创建一个对应BpBinder对象 */
b = new BpBinder(handle);
e->binder = b;
if (b) e->refs = b->getWeakRefs();
result = b;
} else {
// This little bit of nastyness is to allow us to add a primary
// reference to the remote proxy when this team doesn't have one
// but another team is sending the handle to us.
result.force_set(b);
e->refs->decWeak(this);
}
}

return result;
}

|→
在创建完标准BpBinder对象以后,使用了一个模板函数interface_cast()把子类对象也给创建了。interface_cast()的定义在

frameworks/native/libs/binder/include/binder/IInterface.h:

1
2
3
4
5
template<typename INTERFACE>
inline sp<INTERFACE> interface_cast(const sp<IBinder>& obj)
{
return INTERFACE::asInterface(obj);
}

interface_cast()扩展为:

1
2
3
4
inline sp<IServiceManager> interface_cast(const sp<IBinder>& obj)
{
return IServiceManager::asInterface(obj);
}

frameworks/native/libs/binder/include/binder/IInterface.h:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#define IMPLEMENT_META_INTERFACE(INTERFACE, NAME)                       \
const ::android::String16 I##INTERFACE::descriptor(NAME); \
const ::android::String16& \
I##INTERFACE::getInterfaceDescriptor() const { \
return I##INTERFACE::descriptor; \
} \
::android::sp<I##INTERFACE> I##INTERFACE::asInterface( \
const ::android::sp<::android::IBinder>& obj) \
{ \
::android::sp<I##INTERFACE> intr; \
if (obj != NULL) { \
intr = static_cast<I##INTERFACE*>( \
obj->queryLocalInterface( \
I##INTERFACE::descriptor).get()); \
if (intr == NULL) { \
intr = new Bp##INTERFACE(obj); \
} \
} \
return intr; \
} \
I##INTERFACE::I##INTERFACE() { } \
I##INTERFACE::~I##INTERFACE() { } \

frameworks/native/libs/binder/IServiceManager.cpp:

1
IMPLEMENT_META_INTERFACE(ServiceManager, "android.os.IServiceManager");

扩展为:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#define IMPLEMENT_META_INTERFACE(ServiceManager, "android.os.IServiceManager")                       \
const ::android::String16 IServiceManager::descriptor("android.os.IServiceManager"); \
const ::android::String16& \
IServiceManager::getInterfaceDescriptor() const { \
return IServiceManager::descriptor; \
} \
::android::sp<IServiceManager> IServiceManager::asInterface( \
const ::android::sp<::android::IBinder>& obj) \
{ \
::android::sp<IServiceManager> intr; \
if (obj != NULL) { \
intr = static_cast<IServiceManager*>( \
obj->queryLocalInterface( \
IServiceManager::descriptor).get()); \
if (intr == NULL) { \
intr = new BpServiceManager(obj); \
} \
} \
return intr; \
} \
IServiceManager::IServiceManager() { } \
IServiceManager::~IServiceManager() { } \

所以defaultServiceManager()最后得到了一个BpServiceManager对象,利用它的::addService()方法来注册service。
frameworks/native/libs/binder/IServiceManager.cpp:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class BpServiceManager : public BpInterface<IServiceManager>
{
public:
explicit BpServiceManager(const sp<IBinder>& impl)
: BpInterface<IServiceManager>(impl)
{
}

virtual status_t addService(const String16& name, const sp<IBinder>& service,
bool allowIsolated)
{
Parcel data, reply;
data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
data.writeString16(name);
data.writeStrongBinder(service);
data.writeInt32(allowIsolated ? 1 : 0);
status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);
return err == NO_ERROR ? reply.readExceptionCode() : err;
}

virtual sp<IBinder> checkService( const String16& name) const
{
Parcel data, reply;
data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
data.writeString16(name);
remote()->transact(CHECK_SERVICE_TRANSACTION, data, &reply);
return reply.readStrongBinder();
}

remote()->transact()会调用到BpBinder的transact()函数,最后IPCThreadState的transact()函数。
frameworks/native/libs/binder/BpBinder.cpp:

1
2
3
4
5
6
7
8
9
10
11
12
13
status_t BpBinder::transact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
// Once a binder has died, it will never come back to life.
if (mAlive) {
status_t status = IPCThreadState::self()->transact(
mHandle, code, data, reply, flags);
if (status == DEAD_OBJECT) mAlive = 0;
return status;
}

return DEAD_OBJECT;
}

借用老罗的一张图总结,service_manager类之间复杂的关系:

binder_class_manager

4.3、server

有了manager的代理对象以后,server就可以注册服务并且创建binder rx服务线程了。

frameworks/av/media/mediaserver/main_mediaserver.cpp:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
int main(int argc __unused, char **argv __unused)
{
signal(SIGPIPE, SIG_IGN);

sp<ProcessState> proc(ProcessState::self());
sp<IServiceManager> sm(defaultServiceManager());
ALOGI("ServiceManager: %p", sm.get());
InitializeIcuOrDie();
MediaPlayerService::instantiate();
ResourceManagerService::instantiate();
registerExtensions();
ProcessState::self()->startThreadPool();
IPCThreadState::self()->joinThreadPool();
}


frameworks/av/media/libmediaplayerservice/MediaPlayerService.cpp:

1
2
3
4
void MediaPlayerService::instantiate() {
defaultServiceManager()->addService(
String16("media.player"), new MediaPlayerService());
}

所有的细节在上面几节都已经描述过了,还是借用老罗的一张图总结service_server类之间复杂的关系:

binder_class_server

4.4、client proxy

service_client也是创建代理对象,和manager代理非常相似。我们也来具体分析一下。
frameworks/av/media/libmedia/IMediaDeathNotifier.cpp:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IMediaDeathNotifier::getMediaPlayerService()
{
ALOGV("getMediaPlayerService");
Mutex::Autolock _l(sServiceLock);
if (sMediaPlayerService == 0) {
/* (1) 创建manager代理对象 */
sp<IServiceManager> sm = defaultServiceManager();
sp<IBinder> binder;
do {
/* (2) 使用manager代理获取到service的handle,
并根据handle创建一个BpBinder对象
*/
binder = sm->getService(String16("media.player"));
if (binder != 0) {
break;
}
ALOGW("Media player service not published, waiting...");
usleep(500000); // 0.5 s
} while (true);

if (sDeathNotifier == NULL) {
sDeathNotifier = new DeathNotifier();
}
binder->linkToDeath(sDeathNotifier);
/* (3) 根据BpBinder对象,使用interface_cast<IMediaPlayerService>()函数创建一个BpMediaPlayerService对象 */
sMediaPlayerService = interface_cast<IMediaPlayerService>(binder);
}
ALOGE_IF(sMediaPlayerService == 0, "no media player service!?");
return sMediaPlayerService;
}

有了BpMediaPlayerService对象,即MediaPlayerService的远端代理,就可以调用远端service服务了。
frameworks/wilhelm/src/android/android_LocAVPlayer.cpp:

1
2
3
4
5
6
7
8
9
10
11
12
void LocAVPlayer::onPrepare() {
SL_LOGD("LocAVPlayer::onPrepare()");

/* (4.1) 获取到MediaPlayerService的远端代理 */
sp<IMediaPlayerService> mediaPlayerService(getMediaPlayerService());
if (mediaPlayerService != NULL) {
switch (mDataLocatorType) {
case kDataLocatorUri:

/* (4.2) 调用远端service服务 */
mPlayer = mediaPlayerService->create(mPlayerClient /*IMediaPlayerClient*/,
mPlaybackParams.sessionId);

其中通过sm->getService(String16(“media.player”))返回BpBinder的过程如下:
frameworks/native/libs/binder/IServiceManager.cpp:

1
2
3
4
5
6
7
8
9
10
11
    virtual sp<IBinder> getService(const String16& name) const{}

virtual sp<IBinder> checkService( const String16& name) const
{
Parcel data, reply;
data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
data.writeString16(name);
/* (2.1) 向远程manager查询handle */
remote()->transact(CHECK_SERVICE_TRANSACTION, data, &reply);
return reply.readStrongBinder();
}


frameworks/native/libs/binder/Parcel.cpp

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
sp<IBinder> Parcel::readStrongBinder() const
{
sp<IBinder> val;
// Note that a lot of code in Android reads binders by hand with this
// method, and that code has historically been ok with getting nullptr
// back (while ignoring error codes).
readNullableStrongBinder(&val);
return val;
}

status_t Parcel::readNullableStrongBinder(sp<IBinder>* val) const
{
return unflatten_binder(ProcessState::self(), *this, val);
}

status_t unflatten_binder(const sp<ProcessState>& proc,
const Parcel& in, sp<IBinder>* out)
{
const flat_binder_object* flat = in.readObject(false);

if (flat) {
switch (flat->type) {
case BINDER_TYPE_BINDER:
*out = reinterpret_cast<IBinder*>(flat->cookie);
return finish_unflatten_binder(NULL, *flat, in);
case BINDER_TYPE_HANDLE:
/* (2.1.1) 根据handle创建BpBinder */
*out = proc->getStrongProxyForHandle(flat->handle);
return finish_unflatten_binder(
static_cast<BpBinder*>(out->get()), *flat, in);
}
}
return BAD_TYPE;
}


然后就来到了创建manager代理对象同样的位置:
frameworks/native/libs/binder/ProcessState.cpp:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
sp<IBinder> ProcessState::getStrongProxyForHandle(int32_t handle)
{
sp<IBinder> result;

AutoMutex _l(mLock);

/* (2.1.1.1) 查询BpBinder对象缓存,相同handle是否已经创建 */
handle_entry* e = lookupHandleLocked(handle);

if (e != NULL) {
// We need to create a new BpBinder if there isn't currently one, OR we
// are unable to acquire a weak reference on this current one. See comment
// in getWeakProxyForHandle() for more info about this.
IBinder* b = e->binder;
if (b == NULL || !e->refs->attemptIncWeak(this)) {
if (handle == 0) {
// Special case for context manager...
// The context manager is the only object for which we create
// a BpBinder proxy without already holding a reference.
// Perform a dummy transaction to ensure the context manager
// is registered before we create the first local reference
// to it (which will occur when creating the BpBinder).
// If a local reference is created for the BpBinder when the
// context manager is not present, the driver will fail to
// provide a reference to the context manager, but the
// driver API does not return status.
//
// Note that this is not race-free if the context manager
// dies while this code runs.
//
// TODO: add a driver API to wait for context manager, or
// stop special casing handle 0 for context manager and add
// a driver API to get a handle to the context manager with
// proper reference counting.

Parcel data;
status_t status = IPCThreadState::self()->transact(
0, IBinder::PING_TRANSACTION, data, NULL, 0);
if (status == DEAD_OBJECT)
return NULL;
}

/* (2.1.1.2) 给新handle新创建一个对应BpBinder对象 */
b = new BpBinder(handle);
e->binder = b;
if (b) e->refs = b->getWeakRefs();
result = b;
} else {
// This little bit of nastyness is to allow us to add a primary
// reference to the remote proxy when this team doesn't have one
// but another team is sending the handle to us.
result.force_set(b);
e->refs->decWeak(this);
}
}

return result;
}

根据BpBinder对象,使用interface_cast()函数创建一个BpMediaPlayerService对象的过程如下:

interface_cast()扩展为:

1
2
3
4
inline sp<IMediaPlayerService> interface_cast(const sp<IBinder>& obj)
{
return IMediaPlayerService::asInterface(obj);
}

IMediaPlayerService定义在:
frameworks/av/media/libmedia/IMediaPlayerService.cpp:

1
IMPLEMENT_META_INTERFACE(MediaPlayerService, "android.media.IMediaPlayerService");

展开为:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#define IMPLEMENT_META_INTERFACE(MediaPlayerService, "android.os.IServiceManager")                       \
const ::android::String16 IMediaPlayerService::descriptor("android.os.IServiceManager"); \
const ::android::String16& \
IMediaPlayerService::getInterfaceDescriptor() const { \
return IMediaPlayerService::descriptor; \
} \
::android::sp<IMediaPlayerService> IMediaPlayerService::asInterface( \
const ::android::sp<::android::IBinder>& obj) \
{ \
::android::sp<IMediaPlayerService> intr; \
if (obj != NULL) { \
intr = static_cast<IMediaPlayerService*>( \
obj->queryLocalInterface( \
IMediaPlayerService::descriptor).get()); \
if (intr == NULL) { \
/* (3.1) 根据BpBinder对象,创建一个BpMediaPlayerService对象 */
intr = new BpMediaPlayerService(obj); \
} \
} \
return intr; \
} \
IMediaPlayerService::IMediaPlayerService() { } \
IMediaPlayerService::~IMediaPlayerService() { } \

BpMediaPlayerService的定义为:
frameworks/av/media/libmedia/IMediaPlayerService.cpp:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class BpMediaPlayerService: public BpInterface<IMediaPlayerService>
{
public:
explicit BpMediaPlayerService(const sp<IBinder>& impl)
: BpInterface<IMediaPlayerService>(impl)
{
}

virtual sp<IMediaMetadataRetriever> createMetadataRetriever()
{
Parcel data, reply;
data.writeInterfaceToken(IMediaPlayerService::getInterfaceDescriptor());
remote()->transact(CREATE_METADATA_RETRIEVER, data, &reply);
return interface_cast<IMediaMetadataRetriever>(reply.readStrongBinder());
}

};

还是借用老罗的一张图总结service_client类之间复杂的关系:

binder_class_client

4.5、service thread管理

binder service初始会启动2个main线程来提供服务,在等待service服务过多的情况下会动态的增加binder线程的数量,但是目前没有实现动态减少binder线程可能觉得cache着更好。

service一般默认最大考验开启15个线程,这个数值也可以通过ioctl的BINDER_SET_MAX_THREADS命令来修改。

动态增加binder线程的动作是binder驱动完成的,因为驱动可以看到service进程整个的阻塞情况。

具体驱动代码binder.c:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
static int binder_thread_read(struct binder_proc *proc,
struct binder_thread *thread,
binder_uintptr_t binder_buffer, size_t size,
binder_size_t *consumed, int non_block)
{

if (proc->requested_threads == 0 &&
list_empty(&thread->proc->waiting_threads) &&
proc->requested_threads_started < proc->max_threads &&
(thread->looper & (BINDER_LOOPER_STATE_REGISTERED |
BINDER_LOOPER_STATE_ENTERED)) /* the user-space code fails to */
/*spawn a new thread if we leave this out */) {
proc->requested_threads++;
binder_inner_proc_unlock(proc);
binder_debug(BINDER_DEBUG_THREADS,
"%d:%d BR_SPAWN_LOOPER\n",
proc->pid, thread->pid);

/* (1) 判断阻塞的情况下发送BR_SPAWN_LOOPER命令,通知native增加接收线程 */
if (put_user(BR_SPAWN_LOOPER, (uint32_t __user *)buffer))
return -EFAULT;
binder_stat_br(proc, thread, BR_SPAWN_LOOPER);
}

}

frameworks/native/libs/binder/IPCThreadState.cpp:

1
2
3
4
5
6
7
8
status_t IPCThreadState::executeCommand(int32_t cmd)
{

case BR_SPAWN_LOOPER:
mProcess->spawnPooledThread(false);
break;

}


frameworks/native/libs/binder/ProcessState.cpp:

1
2
3
4
5
6
7
8
9
10
void ProcessState::spawnPooledThread(bool isMain)
{
if (mThreadPoolStarted) {
String8 name = makeBinderThreadName();
ALOGV("Spawning new pooled thread, name=%s\n", name.string());
/* (1.1) 创建新的binder接收线程 */
sp<Thread> t = new PoolThread(isMain);
t->run(name.string());
}
}

4.6、死亡通知(DeathRecipient)

可以使用BC_REQUEST_DEATH_NOTIFICATION注册死亡通知,在server端正常或者异常死亡的情况下都能收到通知。

在server端进程正常或者异常退出时,会关闭进程所有打开的文件句柄:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
do_exit()

exit_files()

put_files_struct()

static struct fdtable *close_files(struct files_struct * files)
{
/*
* It is safe to dereference the fd table without RCU or
* ->file_lock because this is the last reference to the
* files structure.
*/
struct fdtable *fdt = rcu_dereference_raw(files->fdt);
unsigned int i, j = 0;

for (;;) {
unsigned long set;
i = j * BITS_PER_LONG;
if (i >= fdt->max_fds)
break;
set = fdt->open_fds[j++];
while (set) {
if (set & 1) {
struct file * file = xchg(&fdt->fd[i], NULL);
if (file) {
filp_close(file, files);
cond_resched_rcu_qs();
}
}
i++;
set >>= 1;
}
}

return fdt;
}

最终会调用到binder fd的release函数,调用到死亡通知的回调:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
static int binder_release(struct inode *nodp, struct file *filp)
{
struct binder_proc *proc = filp->private_data;

debugfs_remove(proc->debugfs_entry);
binder_defer_work(proc, BINDER_DEFERRED_RELEASE);

return 0;
}

static void
binder_defer_work(struct binder_proc *proc, enum binder_deferred_state defer)
{
mutex_lock(&binder_deferred_lock);
proc->deferred_work |= defer;
if (hlist_unhashed(&proc->deferred_work_node)) {
hlist_add_head(&proc->deferred_work_node,
&binder_deferred_list);
schedule_work(&binder_deferred_work);
}
mutex_unlock(&binder_deferred_lock);
}

5、java实现

6、AIDL(Android Interface Definition Language)

参考资料:

1、Android系统进程间通信(IPC)机制 罗升阳
2、Android Binder 分析
3、Android Bander设计与实现
4、Binder实现原理分析
5、一篇文章了解相见恨晚的 Android Binder 进程间通讯机制